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OBJECTIVE — To examine whether concentrations of serum 25-hydroxyvitamin D
(25[OH]D) and parathyroid hormone (PTH) are associated with surrogate markers of insulin
resistance (IR) in U.S. adults without physician-diagnosed diabetes.

RESEARCH DESIGN AND METHODS — Cross-sectional data (n � 3,206) from the
National Health and Nutrition Examination Survey (NHANES) 2003–2006 were analyzed.

RESULTS — The age-adjusted prevalence of hyperinsulinemia, high homeostasis model as-
sessment-IR, high GHb, and fasting and 2-h hyperglycemia decreased linearly across quintiles of
25(OH)D but increased linearly across quintiles of PTH (except for a quadratic trend for fasting
hyperglycemia). After extensive adjustment for potential confounders, the relationships between
25(OH)D and the markers of IR and 2-h hyperglycemia persisted. Only hyperinsulinemia was
positively associated with PTH (P � 0.05).

CONCLUSIONS — Among U.S. adults without physician-diagnosed diabetes, low concen-
trations of serum 25(OH)D were associated with markers of IR. The role of PTH in IR deserves
further investigation.
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The role of vitamin D and parathyroid
hormone (PTH) in metabolic syn-
drome and diabetes is receiving in-

creased attention. Insulin resistance (IR)
may represent a potential mechanism
linking vitamin D and PTH to these con-
ditions. The inverse associations between
vitamin D and fasting insulin concentra-
tions or the homeostasis model assess-
ment of IR (HOMA-IR) index have been
reported in some (1–5) but not all studies
(6). Moreover, evidence linking PTH to
markers of IR is limited and inconsistent

(7–9). This study examined whether se-
rum 25-hydroxyvitamin D (25[OH]D)
and PTH are associated with surrogate
markers of IR in U.S. adults without phy-
sician-diagnosed diabetes.

RESEARCH DESIGN AND
METHODS — We used data from the
National Health and Nutrition Examina-
tion Survey (NHANES) 2003–2006. Par-
ticipants who were aged �20 years,
attended the morning examination after
fasting �8 h, and had not been diagnosed

with diabetes were included as were par-
ticipants with undiagnosed diabetes (fast-
ing glucose �126 mg/dl or GHb �6.5%)
(10). Serum 25(OH)D concentrations
were measured using a radioimmunoas-
say procedure. Serum PTH concentra-
tions were measured on the Elecsys 1010
analyzer using an electrochemiluminescent
procedure. The quintiles of 25(OH)D and
PTH were created after taking into account
the sampling weights.

Plasma concentrations of fasting and
2-h glucose, fasting insulin, and GHb
were adjusted for differences in labora-
tory methodology between NHANES
2003–2004 and 2005–2006. Oral glu-
cose tolerance test data were available
only for NHANES 2005–2006. We de-
fined fasting hyperglycemia as a fasting
glucose �100 mg/dl, 2-h hyperglycemia
as a 2-h glucose �140 mg/dl, and high
GHb as a value of �6.0%. HOMA-IR in-
dex was calculated as (fasting plasma in-
sulin [mU/l] � fasting plasma glucose
[mmol/l])/22.5. Hyperinsulinemia and
high HOMA-IR were defined using the
weighted 75th percentiles.

Covariates in our analyses included
age, sex, race/ethnicity, education, smok-
ing, physical activity, alcohol drinking,
BMI, abdominal obesity, and serum cal-
cium concentrations. From 3,551 partic-
ipants without physician-diagnosed
diabetes, 3,206 (1,582 male subjects and
1,624 female subjects) remained in our
analyses after excluding those who had
missing values for study variables. The
prevalence of surrogate markers of IR was
age-standardized to the 2000 U.S. popu-
lation. Linear trends across quintiles of
25(OH)D and PTH were tested using or-
thogonal contrasts in SUDAAN software.
Multiple logistic regression analyses were
conducted to test associations of 25(OH)D
or PTH with markers of IR.

RESULTS — Among 3,206 partici-
pants, 118 had undiagnosed diabetes.
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Table 1—Age-adjusted prevalence and adjusted ORs (95% CIs) of the surrogate markers of IR by quintiles of serum 25(OH)D and PTH
concentrations among U.S. adults aged >20 years without physician-diagnosed diabetes, NHANES 2003–2006 (n � 3,206)*

n Hyperinsulinemia High HOMA-IR High GHb Fasting hyperglycemia 2-h hyperglycemia†

Quintiles of 25(OH)D
Prevalence (%)

Q1 (�15 ng/ml) 690 37.0 (32.3–42.0) 37.6 (32.8–42.7) 10.8 (8.6–13.4) 32.2 (27.4–37.2) 26.0 (22.9–29.3)
Q2 (15–�21 ng/ml) 731 33.5 (29.2–38.1) 34.2 (29.8–38.9) 6.8 (5.1–8.9) 32.6 (29.1–36.3) 23.0 (18.8–27.8)
Q3 (21–�25 ng/ml) 558 23.6 (19.9–27.9) 22.7 (18.5–27.4) 5.3 (3.6–7.5) 31.8 (28.0–35.9) 21.0 (16.8–25.9)
Q4 (25–�31 ng/ml) 629 17.6 (13.2–23.1) 17.7 (13.3–23.0) 4.6 (3.2–6.6) 31.4 (26.4–36.9) 16.8 (11.7–23.5)
Q5 (�31 ng/ml) 598 13.3 (9.7–18.0) 13.9 (10.4–18.5) 2.8 (1.8–4.3) 25.7 (21.4–30.6) 13.6 (8.2–21.6)
Ptrend �0.001 �0.001 �0.001 0.035 �0.001

Model 1
Q1 (�15 ng/ml) 690 1.00 1.00 1.00 1.00 1.00
Q2 (15–�21 ng/ml) 731 0.81 (0.61–1.08) 0.81 (0.62–1.07) 0.56 (0.39–0.81) 0.96 (0.74–1.24) 0.82 (0.58–1.16)
Q3 (21–�25 ng/ml) 558 0.49 (0.38–0.62) 0.44 (0.33–0.60) 0.42 (0.26–0.68) 0.89 (0.67–1.18) 0.73 (0.48–1.12)
Q4 (25–�31 ng/ml) 629 0.34 (0.23–0.51) 0.33 (0.23–0.47) 0.36 (0.22–0.59) 0.86 (0.61–1.20) 0.52 (0.30–0.90)
Q5 (�31 ng/ml) 598 0.24 (0.17–0.36) 0.25 (0.17–0.36) 0.20 (0.12–0.33) 0.64 (0.48–0.86) 0.39 (0.20–0.76)
Wald-Chisq P �0.001 �0.001 �0.001 0.006 0.002
Ptrend �0.001 �0.001 �0.001 0.005 0.001

Model 2
Q1 (�15 ng/ml) 690 1.00 1.00 1.00 1.00 1.00
Q2 (15–�21 ng/ml) 731 0.80 (0.61–1.06) 0.80 (0.61–1.05) 0.69 (0.45–1.07) 0.94 (0.70–1.25) 0.77 (0.52–1.15)
Q3 (21–�25 ng/ml) 558 0.45 (0.36–0.58) 0.42 (0.31–0.56) 0.58 (0.35–0.96) 0.88 (0.66–1.18) 0.68 (0.43–1.05)
Q4 (25–�31 ng/ml) 629 0.32 (0.21–0.47) 0.31 (0.21–0.44) 0.52 (0.29–0.93) 0.84 (0.58–1.23) 0.48 (0.28–0.85)
Q5 (�31 ng/ml) 598 0.22 (0.15–0.34) 0.23 (0.15–0.34) 0.30 (0.17–0.51) 0.65 (0.46–0.92) 0.36 (0.16–0.77)
Wald-Chisq P �0.001 �0.001 �0.001 0.034 0.003
Ptrend �0.001 �0.001 �0.001 0.016 0.002

Model 3
Q1 (�15 ng/ml) 690 1.00 1.00 1.00 1.00 1.00
Q2 (15–�21 ng/ml) 731 1.04 (0.74–1.46) 1.02 (0.73–1.41) 0.75 (0.46–1.23) 1.01 (0.77–1.32) 0.79 (0.54–1.15)
Q3 (21–�25 ng/ml) 558 0.63 (0.43–0.92) 0.54 (0.36–0.80) 0.74 (0.43–1.29) 1.08 (0.82–1.42) 0.75 (0.50–1.14)
Q4 (25–�31 ng/ml) 629 0.44 (0.27–0.73) 0.41 (0.26–0.63) 0.70 (0.39–1.26) 1.07 (0.78–1.47) 0.58 (0.34–0.98)
Q5 (�31 ng/ml) 598 0.42 (0.24–0.71) 0.41 (0.25–0.66) 0.46 (0.25–0.82) 0.87 (0.64–1.17) 0.50 (0.23–1.01)
Wald-Chisq P �0.001 �0.001 0.098 0.489 0.082
Ptrend �0.001 �0.001 0.019 0.362 0.024

Quintiles of PTH
Prevalence (%)

Q1 (�27 pg/ml) 564 16.0 (12.6–20.1) 15.6 (11.7–20.5) 4.2 (2.3–7.6) 30.3 (24.7–36.6) 13.2 (8.2–20.5)
Q2 (27–�34 pg/ml) 571 18.1 (14.4–22.4) 20.0 (15.5–23.5) 3.1 (1.9–5.1) 29.2 (24.9–33.9) 20.0 (16.1–24.7)
Q3 (34–�42 pg/ml) 635 24.1 (21.0–27.5) 23.4 (20.2–26.9) 5.0 (3.7–6.8) 29.4 (24.4–35.0) 20.7 (15.8–26.7)
Q4 (42–�54 pg/ml) 685 31.3 (27.3–35.7) 31.9 (28.2–35.9) 6.8 (5.1–9.1) 28.9 (25.2–32.9) 24.4 (19.5–30.1)
Q5 (�54 pg/ml) 751 34.4 (29.9–39.2) 33.4 (28.7–38.6) 8.5 (6.9–10.3) 37.3 (33.1–41.7) 20.7 (16.5–25.6)
Ptrend �0.001 �0.001 �0.001 0.036‡ 0.007

Model 1
Q1 (�27 pg/ml) 564 1.00 1.00 1.00 1.00 1.00
Q2 (27–�34 pg/ml) 571 1.28 (0.94–1.75) 1.46 (1.00–2.14) 0.87 (0.37–2.06) 1.07 (0.74–1.54) 1.79 (0.93–3.45)
Q3 (34–�42 pg/ml) 635 1.83 (1.33–2.52) 1.76 (1.19–2.62) 1.38 (0.66–2.86) 1.06 (0.71–1.58) 2.05 (1.21–3.48)
Q4 (42–�54 pg/ml) 685 2.70 (1.92–3.80) 2.81 (1.98–3.99) 1.96 (1.03–3.70) 1.05 (0.71–1.56) 2.59 (1.30–5.17)
Q5 (�54 pg/ml) 751 3.16 (2.34–4.27) 3.08 (2.13–4.45) 2.50 (1.30–4.79) 1.59 (1.08–2.34) 1.98 (1.08–3.64)
Wald-Chisq P �0.001 �0.001 �0.001 0.005 0.040
Ptrend �0.001 �0.001 �0.001 0.008 0.052

Model 2
Q1 (�27 pg/ml) 564 1.00 1.00 1.00 1.00 1.00
Q2 (27–�34 pg/ml) 571 1.26 (0.93–1.73) 1.44 (0.98–2.11) 0.82 (0.35–1.92) 1.02 (0.72–1.46) 1.71 (0.86–3.41)
Q3 (34–�42 pg/ml) 635 1.72 (1.25–2.37) 1.66 (1.11–2.47) 1.30 (0.65–2.58) 1.00 (0.67–1.49) 1.89 (1.04–3.46)
Q4 (42–�54 pg/ml) 685 2.52 (1.79–3.56) 2.61 (1.82–3.74) 1.72 (0.92–3.19) 0.99 (0.66–1.47) 2.38 (1.09–5.20)
Q5 (�54 pg/ml) 751 2.82 (2.04–3.90) 2.72 (1.84–4.02) 1.98 (1.04–3.74) 1.48 (0.97–2.26) 1.73 (0.86–3.47)
Wald-Chisq P �0.001 �0.001 �0.001 0.024 0.016
Ptrend �0.001 �0.001 0.001 0.031 0.209
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The age-adjusted prevalence was 5.7%
(95% CI 4.8–6.7%) for high GHb, 30.6
(27.8–33.6) for fasting hyperglycemia,
and 20.4 (17.7–23.4) for 2-h hyperglyce-
mia. The prevalence of all outcome mea-
sures and the multivariate-adjusted
odds ratios (ORs) for hyperinsulinemia,
high HOMA-IR, high GHb, and 2-h hy-
perglycemia decreased linearly across
quintiles of 25(OH)D (P � 0.05 for all)
(Table 1). After excluding participants
without physician-diagnosed diabetes
but who had diabetes based on fasting
glucose or GHb values, similar results
were observed except the significant asso-
ciation between high GHb and 25(OH)D
disappeared.

Interactions between race/ethnicity
and 25(OH)D for outcome measures were
not significant in the full models.

The prevalence of hyperinsulinemia,
high HOMA-IR, high GHb, and 2-h hy-
perglycemia increased linearly, and the
prevalence of fasting hyperglycemia in-
creased nonlinearly across quintiles of
PTH. After adjusting for demographic
and lifestyle factors, the ORs for hyperin-
sulinemia, high HOMA-IR, and high GHb
were significantly higher in the highest
than in the lowest quintile of PTH, and
significantly increasing trends existed for
all measures except for 2-h hyperglyce-
mia. After further adjusting for all
potential confounders, most of the as-
sociations lost statistical significance;
only an increasing trend for hyperinsu-
linemia across quintiles of PTH per-
sisted (P � 0.05). These results did not
change much after excluding participants
without physician-diagnosed diabetes
but who had diabetes based on fasting
glucose or GHb values.

CONCLUSIONS — Our findings of
an inverse association between 25(OH)D
and IR among adults without physician-
diagnosed diabetes are consistent with
previous findings from cross-sectional
(1–4) and prospective (5) studies. These
results offer further support that lower
concentrations of 25(OH)D may be a pre-
dictor of increased likelihood of diabetes
in the population (11–14).

Compared with previous studies that
examined the associations of 25(OH)D
with IR (1–4), an advantage of our study
was that we were able to simultaneously
examine the associations between serum
25(OH)D and PTH—both of which play
an essential role in regulating calcium ho-
meostasis—and IR. In addition, we were
able to adjust for overall obesity (i.e.,
BMI) and abdominal obesity, which were
strong confounders for the analyses. The
expression of vitamin D receptors in both
pancreatic �-cells and skeletal muscle
cells, which, upon activation by vitamin D
supplementation, result in increased in-
sulin release and responsiveness to insu-
lin for glucose transport (14), may serve
as an underlying mechanism.

Our results regarding possible racial/
ethnic disparities in the associations of
25(OH)D with IR conflict with those from
Scragg et al. (3). Given the high propor-
tion of African Americans with vitamin D
deficiency or insufficiency, the issue of
possible racial/ethnic disparities deserves
further investigation (15).

Primary hyperparathyroidism was as-
sociated with impaired glucose tolerance,
insulin insensitivity, and diabetes (7).
However, a significant correlation be-
tween PTH and HOMA-IR was observed
in adults aged 70 years with an average
BMI of 27 kg/m2 (8), but not in middle-

aged, morbidly obese adults (average BMI
44.7 kg/m2) (9). These studies were con-
ducted in selected populations, and the
data analyses did not adequately control
for potential confounders. Our study,
based on a nationally representative sam-
ple, showed a significant association be-
tween PTH and hyperinsulinemia after
adjusting for potential confounders.
However, analyses limited to participants
with concentrations of 25(OH)D �30
ng/ml (n � 2,518), a point at which PTH
concentrations begin to increase, revealed
no associations between PTH and hyper-
insulinemia or HOMA-IR.

Our study was limited by the inability
to establish the causality between 25(OH)D
and IR based on our cross-sectional study
and by the inability to account for sunlight
exposure due to lack of data.

In conclusion, low concentrations of
25(OH)D were associated with markers
of IR among U.S. adults without physi-
cian-diagnosed diabetes. Future prospec-
tive studies and intervention trials are
needed to confirm the associations of
25(OH)D with IR and to further investi-
gate the role of PTH in IR.
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